Polar FEC Codes Running at Hundreds of Mbit/s in GNU Radio or On a Software Implementation of the Fast-SSC Algorithm

Pascal Giard ${ }^{1}$ and Alexandre J. Raymond ${ }^{2}$
${ }^{1}$ McGill University,
Department of Electrical and Computer Engineering,
Montréal, Québec, Canada
pascal.giard@mail.mcgill.ca
${ }^{2}$ École de technologie supérieure Montréal, Québec, Canada
alexandre.raymond@lacime.etsmtl.ca

August 26, 2015

Who am I?

- Ph.D. candidate and research assistant at McGill University.
- Lecturer and research professional at ÉTS.
- Work on efficient algorithms and implementations for modern error-correction codes with a special focus on polar codes.
- FPGA and ASIC
- Intel/AMD x86-64 and ARM NEON SIMD
- GPGPU

Introduction to Error Correction

Achieving the Channel Capacity

Definition 1948

LDPC Codes 1960

Turbo Codes
1993
0.7 dB

LDPC Codes 2004
0.04 dB

Polar Codes 2008 0 dB using SC as $N \rightarrow \infty$

Achieving the Channel Capacity

Definition
1948

LDPC Codes 1960

Polar Codes
2008
0 dB
using SC as $N \rightarrow \infty$

Very challenging in software.

Achieving the Channel Capacity

Successive cancellation \rightarrow low throughput.
\Rightarrow Use a better algorithm.

Performance at moderate code-length is modest. Becomes excellent with $N>2^{20}$.
\Rightarrow Still competitive under some conditions;
use long frames if required.

Fast-SSC Decoding

What better algorithm? Fast-SSC!

- Orders of magnitude more efficient than SC;
- Maps nicely into SIMD;
- Memory can be arranged in an efficient way;
- Natural fit for systematic coding.

Wait! What is a systematic code?

Non-systematic and Systematic Coding

$(8,4)$ code $\rightarrow 8$-bit codeword: 4 information bits +4 parity bits.

- Non-systematic:

- Systematic:

Non-systematic Polar Encoding

Figure : Structure for a $(8,4)$ polar code.

Systematic Polar Encoding

Figure: Low-complexity structure for a $(8,4)$ polar code.
Alright, now how do we go from SC to Fast-SSC decoding?

Sarkis, Giard, Vardy, Thibeault and Gross, "Fast Polar Decoders: Algorithm and Implementation," IEEE JSAC, 2014. Sarkis, Tal, Giard, Vardy, Thibeault and Gross "Flexible and Low-Complexity Encoding and Decoding of Systematic Polar Codes," submitted to IEEE TCOM and ArXiv, 2015.

Successive-Cancellation Decoding

- Reminder of how SC decoding works.

Successive-Cancellation Decoding

- Reminder of how SC decoding works.

Successive-Cancellation Tree

- View the SC decoder graph as a tree.

Successive-Cancellation Tree

- View the SC decoder graph as a tree.

Successive-Cancellation Tree

- View the SC decoder graph as a tree.

Successive-Cancellation Tree

- View the SC decoder graph as a tree.

Successive-Cancellation Tree

- View the SC decoder graph as a tree.

Successive-Cancellation Tree

- View the SC decoder graph as a tree.

Simplified Successive Cancellation

Fast-SSC Decoding

- Key idea: use more efficient algorithms on constituent codes.
- Fast-SSC supports more node types not covered here.

SC Tree- $(256,230)$

SSC and Fast-SSC Trees- $(256,230)$

SSC

Implemention for GNU Radio

- Systematic polar coding for better BER.
- Supports a subset of the Fast-SSC nodes.
- Uses the FEC API.
- Supports soft inputs for greater error-correction performance.
- Uses fixed-point arithmetic internally.
- Highly-optimized VOLK kernels for SSE4, AVX2 and NEON.

Classical GRC Example

Complete Chain Example

(4, McGill ÉTS

Performance Results

Using a single processor core:

- Under the worst conditions, a stable 50 Mbps on a low-power SandyBridge with SSE4.1.
- Under good conditions, an average coded throughput of 350 Mbps on a Haswell with AVX2 is typical.
\Rightarrow In a complete communication chain, the modern FEC is NOT the bottleneck anymore.

Performance Results Example

Final Words

- Will this be upstreamed to GNU Radio/VOLK?
- Will we make the source code available?
- When can you start using it?
- What if you want to use polar codes outside GNU Radio?

Acknowledgement

The authors would like to warmly thank:

- Profs. Ghyslain Gagnon and Claude Thibeault of ETS for funding this trip.
- Prof. François Gagnon of ETS for HW access and helpful discussions.
- Gabi Sarkis of McGill university for helpful discussions and presentation material.

Contact information

- Pascal.Giard@mail.mcgill.ca
- Alexandre.Raymond@lacime.etsmtl.ca

